
Simplifying
Analyses
with
Advanced C++

Christopher Jones
Cornell University

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Introduction
Physicists want to spend their time studying the data instead of
learning about, writing and debugging code.

Use of advanced C++ coding techniques can help achieve this.

Overview
CLEO
Software Principles
Data Access
templates
exceptions

Combinatorics
operator overloading
expression templates

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

CLEO: History
Based at Cornell University
Using the Cornell Electron Storage Ring (CESR)
e+ e- machine with center of mass energy 3-10 GeV

Date Detector Studying Energy
1979 CLEO I ϒ (bb̅) resonances 10 GeV
1988 CLEO II ϒ(4s) decays to BB̅ 10 GeV
2000 CLEO III ϒ(4s) decays to BB̅ 10 GeV

2003 CLEOc ψ (cc̅) resonances 3 - 4 GeV

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

CLEO: Detector

Return Iron

Inner Iron

Outer Iron

Central
Drift Chamber

Muon Chambers

Beam Pipe

PTLA and VD

Time of Flight

Barrel Crystals

Magnetic Coil

2230402-003

Endcap
Time of Flight

Endcap
Crystals

CDF D0

CLEO

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

CLEO: Data
Now
nearly 1B events taken
20 M BB ̅pairs
3.4 M ψ resonance decays
near 100 TB data stored

Future
1B J/ψ events
10s M signal events / analysis
precision measurements
for comparisons with
Lattice Gauge calculations

Run: 202129 Event: 2559Run: 202129 Event: 2559

XX

YY

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Software History
CLEO II used a FORTRAN system

96 Summer started work on C++ analysis environment
3 full time postdocs

97 Fall adopted as official CLEO III data access framework
98 Sept had workshop and release
99 Nov used for processing engineering data
00 Oct first reconstruction

14.5 FTE of manpower

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Guiding Principles
Physicists want to do physics not program
Concentrate on how physicists think about and use data
Design to be as general purpose as possible
users only have to learn one thing and then apply it everywhere

Impossible to get incorrect data
Make the compiler do the work
keep user interfaces type safe

Make the program do the work
have the program do the bookkeeping, not the user

If it is hard to use it is our fault
and we need to fix it

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Suez Framework
One C++ Framework for all data access
Level 3 trigger, online monitoring, calibration, reconstruction, event display, analysis
only have to learn one system

Dynamic loading of components
dramatically decreases link time

Tcl command interface
easy to learn
third party documentation available

Use multiple sources simultaneously
can use a previously made skim to drive system to only read events of interest

Data on demand
substantially easier job configuration

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Data Model

Stream

Begin Run

End Run

Event

A

A

B

A

B C D E F G H I

C

CB

Geometry A B

Calibration A B

Record

Frame

B

F

B

A

Use mental model from DAQ
All data is accessed through the Frame
Frame: A “snapshot” of CLEO at an instant in time,

formed by the most recent Record in each Stream

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Data Access
All data accessed using the same syntax

Frame holds Records, Records hold data
Type-safe
String only used if do not want default data for type
Table<> and Item<> are handles to data
Exception thrown if access fails

Result MyProc::event(Frame& iFrame) {

Table<Track> tracks;
extract(iFrame.record(kEvent), tracks);
Table<Shower> myPhotons;
extract(iFrame.record(kEvent), “MyPhotons”, myPhotons);
Item<DBRunHeader> runHeader;
extract(iFrame.record(kRun), runHeader);

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Record Design
Based on a design from Babar
Type-safe heterogeneous container
Key-based object retrieval
Key has three parts
Type

translated into an integral value at run time
two strings (Usage and Production)

default object obtained using empty strings

Object insertion builds Key
Object held as a void*
only private interfaces can see the void* all other interfaces are type-safe

Object retrieval
builds key based on type of variable and optional strings
gets object from internal structure
casts object to proper type and assigned to input variable

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Record’’s Key
Key built by templates
First time a Key is requested for a type, it is assigned a value

template<class T,class Key,class Tag> class HCMethods {

Key makeKey(const Tag& iTag) {
 static TypeTag<Key> sType = TypeTagTmp<T,Key>();
 return Key(sType, iTag);

 }

template<class T,class Key>

class TypeTagTmp : public TypeTag<Key> {

TypeTagTmp() : TypeTag<Key>(getValue()) {}
static unsigned long getValue() {
 static unsigned long v = TypeTag<Key>::getNext();
 return v ;

 }

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Specialized Container
Table<T> holds a const PtrTable<T>*
both conform to random access container semantics

size(), begin() and end(), operator[](), find(), empty(), front(), back()
Table<> just forwards all calls to PtrTable<>*

PtrTable<T> requirements
items in a list must return a unique value from ‘identifier()’ method

Two users talking about track ‘3’ are guaranteed to refer to same object

operator[] finds object via identifier()
objects internally sorted for fast look up

internally holds T*
multiple lists can share same objects

externally looks like container of T’s
avoids having to do double dereference of iterators

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Template Optimization
PtrTable<T> is used mostly for reading
Specialized for different types of T::Identifier
integral types: use std::vector internally
other types: use std::map internally

Allows optimal find(T::Identifier) method
Allows optimal iterator type

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Data on Demand
Designed for analysis batch processing
not all objects need to be created each event

Processing is broken into different types of modules
Providers

Source: reads data from a persistent store

Producer: creates data on demand

Requestors
Sink: writes data to a persistent store

Processor: analyzes and filters ‘events’

Data providers register what data they can provide
Processing sequence is set by the order of data requests
Only Processors can halt the processing of an ‘event’
Physicists only explicitly set order of Processors

Source Processor A Processor B Sink

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Example: Get Tracks
SelectBtoKPiProcessor

Producer

Source

Track Fitter

 FitPionsProxy

 FitKaonsProxy

 ...

Track Finder

 TracksProxy

Hit Calibrator

 CalibratedHitsProxy

Raw Data File

 RawDataProxy

Calibration DB

 PedestalProxy

 AlignmentProxy

 ...

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

C++ Exceptions
Without an explicitly set processing sequence, isolating the cause
of a failure can be tricky
Use of C++ exceptions an absolute necessity
Physicist’s code can just assume no problems can occur
on error, the routine will be aborted
no messy status checking necessary

Exception safety
analysis code just uses objects on the stack
reconstruction code makes use of ‘std::auto_ptr’ and a custom list holder smart pointer

NOTE: Exceptions added 6 months after start of first reconstruction.
Only took 3 days.

Lesson: Never too late to add exceptions

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Exception Traces
Unlike Java, C++ provides no stack trace for an exception
We trace data access calls
each ‘extract’ call pushes Key onto trace stack
exiting ‘extract’ call causes index of stack to be moved down one (key remains in list)
constructor of exception holds index to present top of stack
caught exception can print data access stack from its original top to the new top

Adds <10% overhead to very fast access calls

>> Mon Dec 6 13:16:37 2004 Run: 114277 Event: 7799 Stop: event <<
%% ERROR-JobControl.ProcessingPaths: Starting from GamGamKsKsReadFullProc we called extract for
[1] type "FATable<NavShower>" usage "SplitoffApproved" production ""
[2] type "FATable<SplitoffInfo>" usage "" production ""
[3] type "FATable<NavTrack>" usage "Muons" production ""
[4] type "FATable<NavTrack>" usage "Electrons" production ""
[5] type "FATable<DedxInfo>" usage "" production ""
[6] type "FATable<DedxInfo>" usage "MC" production "" <== exception occured
caught a DAException:
"No data of type "FATable<DedxInfo>" "MC" "" in Record event
This data type "FATable<DedxInfo>" exists, but has different tags.
usage "" production ""
Please check your code and/or scripts for correct usage/production tag."

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Combinatorics: DChain
Particle combinatorics is tedious and error prone
must write loops within loops
must avoid double counting particles
must avoid double counting because of conjugation

DChain is a package for building lists of decay chains
decay lists are built by ‘multiplying’ lists of particles
understands conjugation
uses selection functions and objects to decide what decays go into a list
template based to be experiment independent

ChargedPionList pions;
ChargedKaonList kaons;
pions = tracks;
kaons = tracks;
DecayList d0List, dPlusList;
d0List = kaons.minus() * pions.plus();
dPlusList = kaons.minus() * pions.plus() * pions.minus();

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Delayed Evaluation
The math expression, kaons.minus() * pions.plus(), is not
evaluated immediately, instead it produces a CombinatoricList
CombinatoricList holds the lists of particles and conjugations
DecayList::operator= does the actual work
checks if any lists are duplicates and optimizes loops accordingly
checks if any lists are conjugates of each other
loops over particle lists keeping only those decays

particles do not come from a common ‘observable’ (e.g. same track)
pass user’s selection criteria

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Selection
Simple function
bool myD0s(Decay&);
simplest idea to understand
does not work when selection requires info not available from Decay (say the beam energy)
selection function code can not be nested in event processing function

Selection object
class MyD0Select : public SelectionFunction<Decay> {
 public: bool operator()(Decay&);
};
member data can hold additional selection information
selection class must be declared external to event processing function

Functional expression
SimpleSelector<Decay> d0Sel = abs(vMass-kD0Mass) < 100*k_MeV
 && abs(vEnergy - beamEnergy) < 100*k_MeV;
uses expression templates to build a selection object at compile time
external data (e.g. beamEnergy) become member data
expression can be declared next to code that uses the selector
only mathematical and boolean operations can be used for selection (e.g., no loops)

Expression Templates
Expression

As a Graph

As a Class
encode

expression in
template
structure

a

b

v

*

*

-sqrt

>=

sqrt(a*a – b*b) >= v

GtEqOp<

 SqrtOp< SubOp<

 MultOp< A,A >,

 MultOp< B,B >

 >

 >,

 V >

Building the Class
In C++ expression is the following calls

Expression class is built using the following operators
operators do not do the operation
operators return a class that can do the operation

template<class T, class S>
 MultOp<T,S> operator* (const T&, const S&);

template<class T, class S>
 SubOp<T,S> operator- (const T&, const S&);

template<class T, class S>
 GtEqOp<T,S> operator>= (const T&, const S&);

template<class T>
 SqrtOp<T> sqrt (const T&);

operator>=(sqrt(operator-(operator*(a,a),
 operator*(b,b)),
 v)

Doing the Work
Assignment
operation of

container class
does the work

Compiler
optimizes to

original
expression

class Vector {

…

 template <class Node>

 void operator=(const Node& iN)

 {

 for(int i = 0 ; i < size ; ++i)

 {

 *this(i) = iN(i) ;

 }

 }

 for(int i = 0 ; i < size ; ++i)

 {

 *this(i) = sqrt(a(i)*a(i) -

 b(i)*b(i)) >= v(i) ;

 }

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Parts of Expression
SimpleSelector<Decay> d0Sel = abs(vMass-kD0Mass) < 100*k_MeV

Variables
define what methods to be accessed from the Candidate (e.g., Decay object)
vMass

Mathematical operators
transformation to apply to value obtained from Variables
abs(vMass - kD0Mass)

Comparison operators
constructs the class that can perform the comparison
<

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Expression Variables
Purpose: holds functor to call when the expression is evaluated
template<class F> struct Var {
 Var(const F& iF = F()) : m_f(iF) {}
 typedef F func_type;
 F m_f;
};

Example: Call Decay::mass()
Using generic std function classes

Var<mem_fun_ref_t<double, Decay> >
 vMass(mem_fun_ref(&Decay::mass));
Using a specialized helper class

Var<mass> vMass;

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Purpose: Transform the value of Variables

Implementation: define 12 operators plus math functions
 4 methods(+,-,*,/) taking different arguments ({Var,Var}, {double,Var}, {Var, double})

Example: operator+ taking Var and double
typedef bind2nd<plus<double> > bind2plus; calculates argument + stored_value

template <class F>
Var< Composite< F, bind2plus> >
operator+(const Var<F>& iVar, double iValue) {
 typedef Composite<F, bind2plus> CompT; Composite calculates func2(func1(argument));

 CompT temp(iVar.m_func, bind2nd(plus<double>(), iValue));
 return Var<CompT>(temp);
}
returned object calculates iVar.m_func(object) + iValue

Mathematical Operators

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Comparison Operators
Purpose: Construct the selection class

Example:
template<class T>
VarMethod<T::var_type, T::func_type, double, less<double> >
operator<(const T& iVar, double iValue)
{ return VarMethod<...>(iVar.m_func, iValue); }

where
template< class T, the type of object being compared (e.g. Decay)

 class F, the mathematical transformation to apply to the object of type T

 class V, the type of the value being compare with

 class TComp> the comparison operation being applied (e.g. >)

struct VarMethod {
 VarMethod(F iF, V iV) : m_value(iV), m_func(iF) {}
 bool operator()(const T& iArg) {
 return m_comparison(m_func(iArg), m_value) ;
 }
 V m_value; F m_func; TComp m_comparison;
};

calculates iVar.m_func(iArg) < iValue

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Compilation Equivalent
Compiler optimizations can turn
sel = abs(vMass - kD0Mass) < 100*k_MeV &&
 abs(vEnergy - beamEnergy) < 100*k_MeV;

Into code equivalent to
struct Temp {
 Temp(double iValue) : m_beamEnergy(iValue) {}
 bool operator()(Decay& iDecay) {
 return abs(iDecay.mass() - kD0Mass) < 100*k_MeV
 &&
 abs(iDecay.energy() - m_beamEnergy) < 100*k_MeV;
 }
 double m_beamEnergy;
};

sel = Temp(beamEnergy) ;

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Full Example
Result D0Filter::event(Frame& iFrame) {
 Table<Track> tracks;
 extract(iFrame.record(kEvent), tracks);

 Item<BeamEnergy> beamEnergy;
 extract(iFrame.record(kRun), beamEnergy);

 ChargedPionList pions; ChargedKaonList kaons;
 pions = tracks; kaons = tracks;

 Var<mass> vMass; Var<energy> vEnergy;
 SimpleSelector<Decay> sel = abs(vMass - kD0Mass) < 100*k_MeV
 && abs(vEnergy - beamEnergy) < 100*k_MeV;

 DecayList d0List(sel);
 d0List = kaons.minus() * pions.plus();
 d0List += kaons.minus() * pions.plus() *
 pions.minus() * pions.plus();

 return d0List.size() ? kPass : kFailed;
}

CORNELL

UNIVERSITY™ LEPPLEPP
LABORATORY FOR ELEMENTARY-PARTICLE PHYSICSLABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Fermilab Computing
2004/ 12/ 14

Conclusion
C++ does not have to be a burden to physicists
Templates, operator overloading and exceptions can substantially
reduce the work of getting an analysis done
Our experience is physicists will embrace libraries using these
advanced concepts if they makes their jobs easier
even if they must initially learn new coding conventions

